Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 601
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(20): e2402180121, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38717859

RESUMEN

Membrane tubulation coupled with fission (MTCF) is a widespread phenomenon but mechanisms for their coordination remain unclear, partly because of the lack of assays to monitor dynamics of membrane tubulation and subsequent fission. Using polymer cushioned bilayer islands, we analyze the membrane tubulator Bridging Integrator 1 (BIN1) mixed with the fission catalyst dynamin2 (Dyn2). Our results reveal this mixture to constitute a minimal two-component module that demonstrates MTCF. MTCF is an emergent property and arises because BIN1 facilitates recruitment but inhibits membrane binding of Dyn2 in a dose-dependent manner. MTCF is therefore apparent only at high Dyn2 to BIN1 ratios. Because of their mutual involvement in T-tubules biogenesis, mutations in BIN1 and Dyn2 are associated with centronuclear myopathies and our analysis links the pathology with aberrant MTCF. Together, our results establish cushioned bilayer islands as a facile template for the analysis of membrane tubulation and inform of mechanisms that coordinate MTCF.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Dinamina II , Proteínas Supresoras de Tumor , Dinamina II/metabolismo , Dinamina II/genética , Humanos , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Supresoras de Tumor/metabolismo , Proteínas Supresoras de Tumor/genética , Membrana Celular/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Dinámicas Mitocondriales/fisiología , Miopatías Estructurales Congénitas/genética , Miopatías Estructurales Congénitas/metabolismo
2.
JCI Insight ; 9(6)2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38516893

RESUMEN

Tubular aggregate myopathy (TAM) and Stormorken syndrome (STRMK) are clinically overlapping disorders characterized by childhood-onset muscle weakness and a variable occurrence of multisystemic signs, including short stature, thrombocytopenia, and hyposplenism. TAM/STRMK is caused by gain-of-function mutations in the Ca2+ sensor STIM1 or the Ca2+ channel ORAI1, both of which regulate Ca2+ homeostasis through the ubiquitous store-operated Ca2+ entry (SOCE) mechanism. Functional experiments in cells have demonstrated that the TAM/STRMK mutations induce SOCE overactivation, resulting in excessive influx of extracellular Ca2+. There is currently no treatment for TAM/STRMK, but SOCE is amenable to manipulation. Here, we crossed Stim1R304W/+ mice harboring the most common TAM/STRMK mutation with Orai1R93W/+ mice carrying an ORAI1 mutation partially obstructing Ca2+ influx. Compared with Stim1R304W/+ littermates, Stim1R304W/+Orai1R93W/+ offspring showed a normalization of bone architecture, spleen histology, and muscle morphology; an increase of thrombocytes; and improved muscle contraction and relaxation kinetics. Accordingly, comparative RNA-Seq detected more than 1,200 dysregulated genes in Stim1R304W/+ muscle and revealed a major restoration of gene expression in Stim1R304W/+Orai1R93W/+ mice. Altogether, we provide physiological, morphological, functional, and molecular data highlighting the therapeutic potential of ORAI1 inhibition to rescue the multisystemic TAM/STRMK signs, and we identified myostatin as a promising biomarker for TAM/STRMK in humans and mice.


Asunto(s)
Trastornos de las Plaquetas Sanguíneas , Dislexia , Ictiosis , Trastornos Migrañosos , Miopatías Estructurales Congénitas , Proteína ORAI1 , Bazo , Animales , Ratones , Calcio/metabolismo , Eritrocitos Anormales , Trastornos Migrañosos/tratamiento farmacológico , Miosis/tratamiento farmacológico , Miosis/genética , Miosis/metabolismo , Fatiga Muscular , Miopatías Estructurales Congénitas/tratamiento farmacológico , Miopatías Estructurales Congénitas/genética , Miopatías Estructurales Congénitas/metabolismo , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , Bazo/metabolismo , Bazo/anomalías
3.
Stem Cell Res ; 76: 103338, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38354647

RESUMEN

Myofibrillar myopathy (MFM) is a rare genetic disorder characterized by muscular dystrophy that is often associated with cardiac disease. This disease is caused by mutations in several genes, among them DES (encoding desmin) is the most frequently affected. Peripheral blood mononuclear cells from 5 different MFM patients with different DES mutations were reprogrammed into induced pluripotent stem cells (IPSC) using non-integrative vectors. For each patient, one IPSC clone was selected and demonstrated pluripotency hallmarks without genomic abnormalities. SNP profiles were identical to the cells of origin and all the clones have the capacity to differentiate into all three germ layers.


Asunto(s)
Células Madre Pluripotentes Inducidas , Miopatías Estructurales Congénitas , Humanos , Leucocitos Mononucleares , Miopatías Estructurales Congénitas/genética , Mutación/genética
5.
Int J Rheum Dis ; 27(2): e15036, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38333999

RESUMEN

Myofibrillar myopathies (MFMs) are a group of genetically heterogeneous diseases affecting the skeletal and cardiac muscles. Myofibrillar myopathies are characterized by focal lysis of myogenic fibers and integration of degraded myogenic fiber products into inclusion bodies, which are typically rich in desmin and many other proteins. Herein, we report a case of a 54-year-old woman who experienced bilateral thigh weakness for over three years. She was diagnosed with MFMs based on muscle biopsy findings and the presence of a novel mutation in exon 8 of the LDB3 gene. Myofibrillar myopathies caused by a mutation in the LDB3 gene are extremely uncommon and often lack distinct clinical characteristics and typically exhibit a slow disease progression. When considering a diagnosis of MFMs, particularly in complex instances of autosomal dominant myopathies where muscle biopsies do not clearly indicate MFMs, it becomes crucial for clinicians to utilize genetic test as a diagnostic tool.


Asunto(s)
Miofibrillas , Miopatías Estructurales Congénitas , Femenino , Humanos , Persona de Mediana Edad , Miofibrillas/genética , Miofibrillas/metabolismo , Miofibrillas/patología , Miopatías Estructurales Congénitas/diagnóstico , Miopatías Estructurales Congénitas/genética , Miopatías Estructurales Congénitas/metabolismo , Mutación , Exones , Miocardio , Músculo Esquelético/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas con Dominio LIM/genética , Proteínas con Dominio LIM/metabolismo
6.
EBioMedicine ; 99: 104894, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38086156

RESUMEN

BACKGROUND: X-linked myotubular myopathy (XLMTM) is a rare, life-threatening congenital muscle disease caused by mutations in the MTM1 gene that result in profound muscle weakness, significant respiratory insufficiency, and high infant mortality. There is no approved disease-modifying therapy for XLMTM. Resamirigene bilparvovec (AT132; rAAV8-Des-hMTM1) is an investigational adeno-associated virus (AAV8)-mediated gene replacement therapy designed to deliver MTM1 to skeletal muscle cells and achieve long-term correction of XLMTM-related muscle pathology. The clinical trial ASPIRO (NCT03199469) investigating resamirigene bilparvovec in XLMTM is currently paused while the risk:benefit balance associated with this gene therapy is further investigated. METHODS: Muscle biopsies were taken before treatment and 24 and 48 weeks after treatment from ten boys with XLMTM in a clinical trial of resamirigene bilparvovec (ASPIRO; NCT03199469). Comprehensive histopathological analysis was performed. FINDINGS: Baseline biopsies uniformly showed findings characteristic of XLMTM, including small myofibres, increased internal or central nucleation, and central aggregates of organelles. Biopsies taken at 24 weeks post-treatment showed marked improvement of organelle localisation, without apparent increases in myofibre size in most participants. Biopsies taken at 48 weeks, however, did show statistically significant increases in myofibre size in all nine biopsies evaluated at this timepoint. Histopathological endpoints that did not demonstrate statistically significant changes with treatment included the degree of internal/central nucleation, numbers of triad structures, fibre type distributions, and numbers of satellite cells. Limited (predominantly mild) treatment-associated inflammatory changes were seen in biopsy specimens from five participants. INTERPRETATION: Muscle biopsies from individuals with XLMTM treated with resamirigene bilparvovec display statistically significant improvement in organelle localisation and myofibre size during a period of substantial improvements in muscle strength and respiratory function. This study identifies valuable histological endpoints for tracking treatment-related gains with resamirigene bilparvovec, as well as endpoints that did not show strong correlation with clinical improvement in this human study. FUNDING: Astellas Gene Therapies (formerly Audentes Therapeutics, Inc.).


Asunto(s)
Músculo Esquelético , Miopatías Estructurales Congénitas , Masculino , Lactante , Humanos , Músculo Esquelético/patología , Terapia Genética/efectos adversos , Terapia Genética/métodos , Debilidad Muscular , Fuerza Muscular , Miopatías Estructurales Congénitas/genética , Miopatías Estructurales Congénitas/terapia , Miopatías Estructurales Congénitas/patología
7.
Neuromuscul Disord ; 35: 42-52, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38061948

RESUMEN

The Myotubular and Centronuclear Myopathy Registry is an international research database containing key longitudinal data on a diverse and growing cohort of individuals affected by this group of rare and ultra-rare neuromuscular conditions. It can inform and support all areas of translational research including epidemiological and natural history studies, clinical trial feasibility planning, recruitment for clinical trials or other research studies, stand-alone clinical studies, standards of care development, and provision of real-world evidence data. For ten years, it has also served as a valuable communications tool and provided a link between the scientific and patient communities. With the anticipated advent of disease-modifying therapies for these conditions, the registry is a key resource for the generation of post-authorisation data for regulatory decision-making, real world evidence, and patient-reported outcome measures. In this paper we present some key data from the current 444 registered individuals with the following genotype split: MTM1 n=270, DNM2 n=42, BIN1 n=4, TTN n=4, RYR1 n=12, other n=4, unknown n=108. The data presented are consistent with the current literature and the common understanding of a strong genotype/phenotype correlations in CNM, most notably the data supports the current knowledge that XLMTM is typically the most severe form of CNM. Additionally, we outline the ways in which the registry supports research, and, more generally, the importance of continuous investment and development to maintain the relevance of registries for all stakeholders. Further information on the registry and contact details are available on the registry website at www.mtmcnmregistry.org.


Asunto(s)
Músculo Esquelético , Miopatías Estructurales Congénitas , Humanos , Investigación Biomédica Traslacional , Dinamina II/genética , Genotipo , Miopatías Estructurales Congénitas/genética , Miopatías Estructurales Congénitas/terapia
8.
J Biochem ; 175(2): 125-131, 2024 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-37848047

RESUMEN

A transverse-tubule (T-tubule) is an invagination of the plasma membrane penetrating deep into muscle cells. An extensive membrane network of T-tubules is crucial for rapid and synchronized signal transmission from the cell surface to the entire sarcoplasmic reticulum for Ca2+ release, leading to muscle contraction. T-tubules are also indispensable for the formation and positioning of other muscle organelles. Their structure and physiological roles are relatively well established; however, the mechanisms shaping T-tubules require further elucidation. Centronuclear myopathy (CNM), an inherited muscular disorder, accompanies structural defects in T-tubules. Membrane traffic-related genes, including MTM1 (Myotubularin 1), DNM2 (Dynamin 2), and BIN1 (Bridging Integrator-1), were identified as causative genes of CNM. In addition, causative genes for other muscle diseases are also reported to be involved in the formation and maintenance of T-tubules. This review summarizes current knowledge on the mechanisms of how T-tubule formation and maintenance is regulated.


Asunto(s)
Miopatías Estructurales Congénitas , Humanos , Citosol , Miopatías Estructurales Congénitas/genética , Contracción Muscular , Membrana Celular , Músculos , Músculo Esquelético
9.
Pract Neurol ; 24(2): 137-140, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-37923376

RESUMEN

Tubular aggregate myopathies comprise a rare group of disorders with characteristic pathological findings and heterogeneous phenotypes, including myasthenic syndrome. We describe a patient with tubular aggregate myopathy who presented with fatiguable weakness improving with pyridostigmine, respiratory involvement and possible cardiac manifestations. We highlight the utility of muscle biopsy in atypical myasthenic syndrome.


Asunto(s)
Enfermedades Autoinmunes , Miopatías Estructurales Congénitas , Humanos , Músculo Esquelético/patología , Debilidad Muscular/etiología , Debilidad Muscular/patología , Miopatías Estructurales Congénitas/complicaciones , Miopatías Estructurales Congénitas/genética , Miopatías Estructurales Congénitas/patología , Fenotipo
10.
Acta Myol ; 42(2-3): 86-88, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38090546

RESUMEN

Congenital myopathies (CMs) are a clinically and genetically heterogeneous group of disorders characterized by early onset weakness, hypotonia and characteristic structural abnormalities in muscle fibres. Hypotonia and weakness can be present at birth or appear in infancy, and a static or slowly progressive clinical course may present with muscle weakness, loss of spontaneous movement, involuntary muscle activity, and muscle atrophy. Often patients develop a restrictive syndrome and respiratory failure and require respiratory support In our case, we described lung improvement and respiratory muscle training due to singing in a young patient, affected by CMs with a poor adherence to non-invasive mechanical ventilation.


Asunto(s)
Miopatías Estructurales Congénitas , Canto , Recién Nacido , Humanos , Miopatías Estructurales Congénitas/genética , Miopatías Estructurales Congénitas/terapia , Hipotonía Muscular , Fibras Musculares Esqueléticas , Pulmón
11.
BMJ Case Rep ; 16(12)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38050391

RESUMEN

Myofibrillar myopathies (MFMs) are a group of rare genetic disorders that affect the function of skeletal, cardiac and smooth muscle.MFM exhibits a considerable degree of clinical heterogeneity. In numerous instances of MFM, muscle weakness is the predominant manifestation. Certain MFM subtypes are distinguished by respiratory and cardiac impairment.There is little information available about anaesthetic management in MFM, and even less is known about obstetric anaesthesia.A successful case of a patient with MFM undergoing a caesarean section under combined neuraxial anaesthesia is reported. The patient experienced no complications, and functional recovery was swift.


Asunto(s)
Anestésicos , Miopatías Estructurales Congénitas , Embarazo , Humanos , Femenino , Cesárea , Miopatías Estructurales Congénitas/complicaciones , Miopatías Estructurales Congénitas/genética , Debilidad Muscular , Músculo Esquelético
12.
Genes (Basel) ; 14(12)2023 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-38136996

RESUMEN

BACKGROUND: X-linked myotubular myopathy (XLMTM) is a rare congenital myopathy resulting from dysfunction of the protein myotubularin encoded by the MTM1 gene. XLMTM has a high neonatal and infantile mortality rate due to a severe myopathic phenotype and respiratory failure. However, in a minority of XLMTM cases, patients present with milder phenotypes and achieve ambulation and adulthood. Notable facial dysmorphia is also present. METHODS: We investigated the genotype-phenotype correlations in newly diagnosed XLMTM patients in a patients' cohort (previously published data plus three novel variants, n = 414). Based on the facial gestalt difference between XLMTM patients and unaffected controls, we investigated the use of the Face2Gene application. RESULTS: Significant associations between severe phenotype and truncating variants (p < 0.001), frameshift variants (p < 0.001), nonsense variants (p = 0.006), and in/del variants (p = 0.036) were present. Missense variants were significantly associated with the mild and moderate phenotype (p < 0.001). The Face2Gene application showed a significant difference between XLMTM patients and unaffected controls (p = 0.001). CONCLUSIONS: Using genotype-phenotype correlations could predict the disease course in most XLMTM patients, but still with limitations. The Face2Gene application seems to be a practical, non-invasive diagnostic approach in XLMTM using the correct algorithm.


Asunto(s)
Mutación Missense , Miopatías Estructurales Congénitas , Recién Nacido , Humanos , Pronóstico , Fenotipo , Miopatías Estructurales Congénitas/diagnóstico , Miopatías Estructurales Congénitas/genética , Estudios de Asociación Genética
13.
Med Sci (Paris) ; 39 Hors série n° 1: 6-10, 2023 Nov.
Artículo en Francés | MEDLINE | ID: mdl-37975763

RESUMEN

Autosomal dominant centronuclear myopathy (AD-CNM) is a rare congenital myopathy characterized by muscle weakness and centrally located nuclei in muscle fibers in the absence of any regeneration. AD-CNM is due to mutations in the DNM2 gene encoding dynamin 2 (DNM2), a large GTPase involved in intracellular membrane trafficking and a regulator of actin and microtubule cytoskeletons. DNM2 mutations are associated with a broad clinical spectrum ranging from severe neonatal to less severe late-onset forms. The histopathological signature includes nuclear centralization, predominance and atrophy of type 1 myofibers and radiating sarcoplasmic strands. To explain the muscle dysfunction, several pathophysiological mechanisms affecting key mechanisms of muscle homeostasis have been identified. They include defects in excitation-contraction coupling, muscle regeneration, mitochondria or autophagy. Several therapeutic approaches are under development by modulating the expression of DNM2 in a pan-allelic manner or by allele-specific silencing targeting only the mutated allele, which open the era of clinical trials for this pathology.


Title: La myopathie centronucléaire liée au gène de la dynamine 2. Abstract: La myopathie centronucléaire autosomique dominante (AD-CNM) est une myopathie congénitale rare caractérisée par une faiblesse musculaire et par la présence de noyaux centraux dans les fibres musculaires en absence de tout processus de régénération. L'AD-CNM est due à des mutations du gène DNM2 codant la dynamine 2 (DNM2), une volumineuse GTPase impliquée dans le trafic membranaire intracellulaire et un régulateur des cytosquelettes d'actine et de microtubules. Les mutations de la DNM2 sont associées à un large éventail clinique allant de formes sévères néonatales à des formes moins graves à début plus tardif. La signature histopathologique inclut une centralisation nucléaire, une prédominance et une atrophie des fibres lentes, ainsi que des travées sarcoplasmiques en rayons de roue. Pour expliquer la dysfonction musculaire, plusieurs mécanismes physiopathologiques affectant des étapes clés de l'homéostasie musculaire ont été identifiés. Ils incluent des défauts du couplage excitation-contraction, de la régénération musculaire, des mitochondries ou de l'autophagie. Plusieurs approches thérapeutiques sont en développement, en particulier la modulation de l'expression de la DNM2 pan-allélique ou ne ciblant que l'allèle muté, ouvrant ainsi la porte à des essais cliniques dans cette pathologie.


Asunto(s)
Músculo Esquelético , Miopatías Estructurales Congénitas , Humanos , Recién Nacido , Dinamina II/genética , Dinamina II/metabolismo , Fibras Musculares Esqueléticas/patología , Músculo Esquelético/patología , Mutación , Miopatías Estructurales Congénitas/genética , Miopatías Estructurales Congénitas/patología
14.
Med Sci (Paris) ; 39 Hors série n° 1: 32-36, 2023 Nov.
Artículo en Francés | MEDLINE | ID: mdl-37975768

RESUMEN

Myotubular myopathy is a rare disease of genetic origin characterized by significant muscle weakness leading to respiratory disorders and for which no treatment exists today. In this paper, we show that inhibition of the activity of the enzyme PI3KC2ß prevents the development of this myopathy in a mouse model of the disease, thus identifying a therapeutic target to treat myotubular myopathy in humans.


Title: Une cible thérapeutique prometteuse dans la myopathie myotubulaire. Abstract: La myopathie myotubulaire est une maladie rare d'origine génétique caractérisée par une importante faiblesse musculaire entraînant des troubles respiratoires et pour laquelle aucun traitement n'existe aujourd'hui. Dans cet article, nous montrons que l'inhibition de l'activité de l'enzyme PI3KC2ß prévient le développement de cette myopathie dans un modèle murin de la maladie, identifiant ainsi une cible thérapeutique pour traiter la myopathie myotubulaire chez l'homme.


Asunto(s)
Miopatías Estructurales Congénitas , Animales , Ratones , Modelos Animales de Enfermedad , Miopatías Estructurales Congénitas/genética , Miopatías Estructurales Congénitas/terapia , Proteínas Tirosina Fosfatasas no Receptoras/genética
16.
Lancet Neurol ; 22(12): 1125-1139, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37977713

RESUMEN

BACKGROUND: X-linked myotubular myopathy is a rare, life-threatening, congenital muscle disease observed mostly in males, which is caused by mutations in MTM1. No therapies are approved for this disease. We aimed to assess the safety and efficacy of resamirigene bilparvovec, which is an adeno-associated viral vector serotype 8 delivering human MTM1. METHODS: ASPIRO is an open-label, dose-escalation trial at seven academic medical centres in Canada, France, Germany, and the USA. We included boys younger than 5 years with X-linked myotubular myopathy who required mechanical ventilator support. The trial was initially in two parts. Part 1 was planned as a safety and dose-escalation phase in which participants were randomly allocated (2:1) to either the first dose level (1·3 × 1014 vector genomes [vg]/kg bodyweight) of resamirigene bilparvovec or delayed treatment, then, for later participants, to either a higher dose (3·5 × 1014 vg/kg bodyweight) of resamirigene bilparvovec or delayed treatment. Part 2 was intended to confirm the dose selected in part 1. Resamirigene bilparvovec was administered as a single intravenous infusion. An untreated control group comprised boys who participated in a run-in study (INCEPTUS; NCT02704273) or those in the delayed treatment cohort who did not receive any dose. The primary efficacy outcome was the change from baseline to week 24 in hours of daily ventilator support. After three unexpected deaths, dosing at the higher dose was stopped and the two-part feature of the study design was eliminated. Because of changes to the study design during its implementation, analyses were done on an as-treated basis and are deemed exploratory. All treated and control participants were included in the safety analysis. The trial is registered with ClinicalTrials.gov, NCT03199469. Outcomes are reported as of Feb 28, 2022. ASPIRO is currently paused while deaths in dosed participants are investigated. FINDINGS: Between Aug 3, 2017 and June 1, 2021, 30 participants were screened for eligibility, of whom 26 were enrolled; six were allocated to the lower dose, 13 to the higher dose, and seven to delayed treatment. Of the seven children whose treatment was delayed, four later received the higher dose (n=17 total in the higher dose cohort), one received the lower dose (n=7 total in the lower dose cohort), and two received no dose and joined the control group (n=14 total, including 12 children from INCEPTUS). Median age at dosing or enrolment was 12·1 months (IQR 10·0-30·9; range 9·5-49·7) in the lower dose cohort, 31·1 months (16·0-64·7; 6·8-72·7) in the higher dose cohort, and 18·7 months (10·1-31·5; 5·9-39·3) in the control cohort. Median follow-up was 46·1 months (IQR 41·0-49·5; range 2·1-54·7) for lower dose participants, 27·6 months (24·6-29·1; 3·4-41·0) for higher dose participants, and 28·3 months (9·7-46·9; 5·7-32·7) for control participants. At week 24, lower dose participants had an estimated 77·7 percentage point (95% CI 40·22 to 115·24) greater reduction in least squares mean hours per day of ventilator support from baseline versus controls (p=0·0002), and higher dose participants had a 22·8 percentage point (6·15 to 39·37) greater reduction from baseline versus controls (p=0·0077). One participant in the lower dose cohort and three in the higher dose cohort died; at the time of death, all children had cholestatic liver failure following gene therapy (immediate causes of death were sepsis; hepatopathy, severe immune dysfunction, and pseudomonal sepsis; gastrointestinal haemorrhage; and septic shock). Three individuals in the control group died (haemorrhage presumed related to hepatic peliosis; aspiration pneumonia; and cardiopulmonary failure). INTERPRETATION: Most children with X-linked myotubular myopathy who received MTM1 gene replacement therapy had important improvements in ventilator dependence and motor function, with more than half of dosed participants achieving ventilator independence and some attaining the ability to walk independently. Investigations into the risk for underlying hepatobiliary disease in X-linked myotubular myopathy, and the need for monitoring of liver function before gene replacement therapy, are ongoing. FUNDING: Astellas Gene Therapies.


Asunto(s)
Miopatías Estructurales Congénitas , Sepsis , Masculino , Niño , Humanos , Lactante , Preescolar , Francia , Terapia Genética/efectos adversos , Miopatías Estructurales Congénitas/genética , Miopatías Estructurales Congénitas/terapia , Alemania , Resultado del Tratamiento
18.
Biomolecules ; 13(10)2023 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-37892232

RESUMEN

Myo-inositol belongs to one of the sugar alcohol groups known as cyclitols. Phosphatidylinositols are one of the derivatives of Myo-inositol, and constitute important mediators in many intracellular processes such as cell growth, cell differentiation, receptor recycling, cytoskeletal organization, and membrane fusion. They also have even more functions that are essential for cell survival. Mutations in genes encoding phosphatidylinositols and their derivatives can lead to many disorders. This review aims to perform an in-depth analysis of these connections. Many authors emphasize the significant influence of phosphatidylinositols and phosphatidylinositols' phosphates in the pathogenesis of myotubular myopathies, neurodegenerative disorders, carcinogenesis, and other less frequently observed diseases. In our review, we have focused on three of the most often mentioned groups of disorders. Inositols are the topic of many studies, and yet, there are no clear results of successful clinical trials. Analysis of the available literature gives promising results and shows that further research is still needed.


Asunto(s)
Miopatías Estructurales Congénitas , Enfermedades Neurodegenerativas , Humanos , Fosfatidilinositoles/metabolismo , Inositol/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Miopatías Estructurales Congénitas/genética , Miopatías Estructurales Congénitas/patología , Carcinogénesis/genética , Antecedentes Genéticos , Redes y Vías Metabólicas , Enfermedades Neurodegenerativas/genética
19.
Eur J Obstet Gynecol Reprod Biol ; 291: 34-38, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37813004

RESUMEN

Polyhydramnios can be caused by genetic defects at times. However, to establish an accurate diagnosis and provide a precise prenatal consultation in a given case is still a great challenge toward obstetricians. To uncover the genetic cause of polyhydramnios in the two consecutive pregnancies, we performed whole-exome sequencing of DNA for the second suffering fetuses, their parents, and targeted sanger sequencing of other members of this family. We discovered a hemizygous truncating variant in MTM1 gene, c.438_439 del (p. H146Q fs*10) in this Chinese family. In the light of the molecular discoveries, the fetus's clinical phenotype was considered to be a good fit for X-linked myotubular myopathy (XLMTM). There is no related research to the prenatal manifestations of MTM1-related XLMTM among Chinese population, and this is the first one to present. Though the etiology of polyhydramnios is complicated, WES may provide us with a creative avenue in prenatal diagnosis.


Asunto(s)
Miopatías Estructurales Congénitas , Polihidramnios , Embarazo , Femenino , Humanos , Secuenciación del Exoma , Polihidramnios/diagnóstico por imagen , Polihidramnios/genética , Proteínas Tirosina Fosfatasas no Receptoras/genética , Mutación , Miopatías Estructurales Congénitas/diagnóstico , Miopatías Estructurales Congénitas/genética , Miopatías Estructurales Congénitas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA